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Abstract

■ Perceptual decision-making has been shown to be influ-
enced by reward expected from alternative options or actions,
but the underlying neural mechanisms are currently unknown.
More specifically, it is debated whether reward effects are me-
diated through changes in sensory processing, later stages of
decision-making, or both. To address this question, we con-
ducted two experiments in which human participants made sac-
cades to what they perceived to be either the first or second of
two visually identical but asynchronously presented targets
while we manipulated expected reward from correct and in-
correct responses on each trial. By comparing reward-induced
bias in target selection (i.e., reward bias) during the two ex-
periments, we determined whether reward caused changes in
sensory or decision-making processes. We found similar reward
biases in the two experiments indicating that reward informa-

tion mainly influenced later stages of decision-making [R1.1].
Moreover, the observed reward biases were independent of
the individual’s sensitivity to sensory signals. This suggests that
reward effects were determined heuristically via modulation of
decision-making processes instead of sensory processing. To
further explain our findings and uncover plausible neural mech-
anisms, we simulated our experiments with a cortical network
model and tested alternative mechanisms for how reward could
exert its influence. We found that our experimental observa-
tions are more compatible with reward-dependent input to
the output layer of the decision circuit. Together, our results
suggest that, during a temporal judgment task, reward exerts
its influence via changing later stages of decision-making (i.e.,
response bias) rather than early sensory processing (i.e., per-
ceptual bias). ■

INTRODUCTION

Imagine deciding whether your iPhone or your friend’s
Google Pixel takes sharper photos. To make this decision
impartially, you look at some photos on both phones but
end up favoring your own phone. Your decision could be
impartial and entirely based on perceived quality of
photos on the two phones but could also be influenced
by fun memories of taking photos with your phone.
Similarly, any perceptual decision-making could depend
not only on sensory evidence but also on experienced or
expected reward (Sugrue, Corrado, & Newsome, 2005).
Understanding how reward information is incorporated
into perceptual choice can provide valuable insights into
the neural mechanisms underlying both decision-making and
reward processes (Farashahi, Ting, Kao, Wu, & Soltani, 2018;
Christopoulos, Bonaiuto, & Andersen, 2015; Christopoulos &
Schrater, 2015; Gao, Tortell, & McClelland, 2011; Rorie,
Gao, McClelland, & Newsome, 2010; Stanford, Shankar,
Massoglia, Costello, & Salinas, 2010; Sugrue et al., 2005).

Recently, there have been a number of studies that
investigated mechanisms by which reward information influ-
ences perceptual decision-making (Farashahi, Ting, et al.,
2018; Rajsic, Perera, & Pratt, 2017; Tosoni, Committeri,
Calluso, & Galati, 2017; Cicmil, Cumming, Parker, & Krug,
2015; Gao et al., 2011; Diederich, 2008; Liston & Stone,
2008; Voss, Rothermund, & Brandtstädter, 2008; Diederich
& Busemeyer, 2006). Some of these studies suggest that re-
ward information mainly affects perceptual choice by altering
the starting or end point of decision-making processes
(Mulder, Wagenmakers, Ratcliff, Boekel, & Forstmann,
2012; Gao et al., 2011; Rorie et al., 2010; Summerfield &
Koechlin, 2010; Feng, Holmes, Rorie, & Newsome, 2009;
Diederich, 2008; Diederich & Busemeyer, 2006). For exam-
ple, Diederich and colleagues propose that value-based per-
ceptual decision-making follows a two-stage process in which
the payoff of the alternative choices is evaluated first with-
out directly influencing the processing of sensory infor-
mation that happens later (Diederich, 2008; Diederich
& Busemeyer, 2006). However, others argue that reward
directly influences the processing of sensory information
and perception (Cicmil et al., 2015; Liston & Stone, 2008;
Pleger, Blankenburg, Ruff, Driver, & Dolan, 2008; Voss
et al., 2008).
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These competing hypotheses—–influence of reward
on sensory processing or influence on later stages of
decision-making—–predict that unequal expected reward
should result in perceptual bias or response bias, respec-
tively (Liston & Stone, 2008). That is, by changing sensory
processing, reward could alter perception (perceptual bias)
similarly to the effect of selective attention on contrast judg-
ment (Carrasco & Barbot, 2019; Carrasco, Ling, & Read,
2004). Going back to our phone analogy, reward could
make the more rewarding photos to appear sharper. On
the other hand, modulation of later decision processes
could bias response toward the more rewarding option (re-
sponse bias) without any changes in perception. In our
analogy, this corresponds to favoring our phone without
perceiving any difference in image quality. Nonetheless, ev-
idence supporting either hypothesis mostly has been based
on fitting performance and RT data using different models
(e.g., drift diffusion model) and thus is model dependent.
Moreover, it is unclear whether positive and negative ex-
pected reward outcomes influence perceptual decision-
making similarly or differently.

To address these questions and distinguish between the
two alternative hypotheses, we used two sets of experi-
ments to directly measure the influence of unequal ex-
pected reward on perceptual decision-making during a
temporal judgment task. Our design resembles that of a
study by Shore and colleagues (Shore, Spence, & Klein,
2001) in which the authors used attentional cueing in a
temporal order judgment (TOJ) task and asked participants
to report the first or second targets that appeared on the
screen. By comparing the shifts in psychometric functions
in the two tasks, Shore and colleagues aimed to separate
changes in sensory processing from response biases
[R1.5]. Similarly, in our experiments, participants made
saccades to report what they perceived to be the first
(Experiment 1) or second (Experiment 2) of the two iden-
tical targets that appeared on the computer screen with
varying onset asynchrony. Instead of attentional cueing,
however, we manipulated the amount of reward points
to be gained (gains) or lost (losses) upon correct and
incorrect response, respectively, on each trial. Different
values of expected gains and losses associated with the
left and right choices were presented on the two sides
of the fixation cross to create three reward conditions:
Neutral, Gain, and Loss. This design allowed us to esti-
mate the shift in target selection and sensitivity of choice
in response to different target onset asynchronies (TOAs)
and how this shift and sensitivity were affected by reward
manipulation.

In both our experiments, the expected reward associ-
ated with left and right choices did not predict the cor-
rect response on a given trial. As a result, the observer or
decision-maker could either ignore reward information
or use this information to enhance sensory processing
on both sides equally. However, none of these observers
(which we refer to as Type 1 observers) would exhibit
bias in target selection [R1.2] [R1.4].

Alternatively, the observer could utilize differential re-
ward information to guide sensory processing and target
selection via several different mechanisms. First, the ob-
server could use reward information to attend to the
more rewarding side more strongly (Type 2 observers),
which could subsequently result in enhanced processing
of visual information on that side. Such an enhancement
of visual processing would cause the target on the more
rewarding side (better target) to appear earlier even if
the both targets appeared on the screen simultaneously
(perceptual bias). This would, in turn, increase the prob-
ability of choosing the better target in Experiment 1
(Figure 1A). In contrast, the earlier perception of the
better target would increase the probability of choosing
the worse target in Experiment 2 in which the partici-
pant has to saccade to the target that appeared second
(Figure 1B). Second, the observer could use reward in-
formation to directly bias their response to increase
their overall payoff. Such response bias could increase
the overall payoff because there are trials in which the
temporal judgment is very difficult (for small TOA) or
impossible (when TOA was equal to 0) and it is benefi-
cial to choose the better target in those trials. This effect
of reward on decision-making results in more frequent
selection of the better target in both Experiments 1 and
2 (Figure 1C–D). The response bias could be dependent
(Type 3 observers) or independent (Type 4 observers)
of the individual observer’s sensitivity to visual informa-
tion; however, only the former observers are able to op-
timize the overall payoff [R1.2] [R1.4].
Therefore, changes in sensory processing would re-

sult in perceptual bias and opposite shifts in target se-
lection in Experiments 1 and 2 for Type 2 observers,
but changes in later stages of decision-making would
cause response bias and similar shifts in target selection
toward the better target in the two experiments (Types 3
and 4 observers). Moreover, these mechanisms predict
different relationships between the shift in target selec-
tion due to reward and the overall sensitivity to sensory
information (see Results for more details) [R1.2] [R1.4].
Therefore, by comparing reward-induced shifts in

target selection in the two experiments and examining
the relationship between these shifts and sensitivity to
sensory information, we aimed to identify mechanisms
by which reward exerts its influence on perceptual
decision-making [R1.2]. We also used a biophysically
plausible cortical network model to replicate the experi-
mental data to identify possible neural mechanisms un-
derlying the influence of reward on perceptual choice.

METHODS

Ethics Statement

A total of 29 (15 female) participants were recruited from
the Dartmouth College student population (ages 18–22
years) to participate in our experiments. Of the 29
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participants, 21 performed in both Experiments 1 and 2,
each of which consisted of four sessions. The remaining
eight participants only performed in either Experiment 1
or 2. All participants gave informed consent to participate
according to a protocol approved by the Dartmouth
College Institutional Review Board. All participants
signed a written consent form before participating in
the experiments.

Experimental Design

To compare different mechanisms of how reward in-
fluences perceptual decision-making, we measured the
effects of reward on target selection during a TOJ task.
We used a within-participant design in which human par-
ticipants performed two variations of a temporal judg-
ment task known as the paired-target task under three
different reward conditions (Neutral, Gain, and Loss;
see Reward Conditions section). The participants were
required to detect the order of two visually identical tar-
gets (gabor patches) that appeared on the computer
screen at varying time intervals with respect to each
other (Schiller & Chou, 1998). The participant’s task was
to saccade to the first target in Experiment 1 (after both

targets were presented), whereas in Experiment 2, the par-
ticipant’s task was to saccade to the second target
(Figure 2). Participants were instructed to saccade to the
correct target (first target in Experiment 1 and second tar-
get in Experiment 2) without being concerned about the
speed (i.e., reward did not depend on response time).
Following each response, participants received reward
feedback—a green or red circle with the amount of re-
ward points earned or lost, respectively (Figure 2).

To motivate the participants, participants’ total reward
points were exchanged for a monetary reward at the
end of each experiment based on their performance.
They were compensated with a combination of money
and “t-points,” extra credit points for classes within the
Department of Psychological and Brain Sciences at
Dartmouth College. More specifically, in addition to the
base rate of $10/hr or 1 t-point/hr, participants were com-
pensated up to an additional $10/hr depending on the
total reward points they collected in each experiment.
The order of two experiments was randomized across
participants to avoid possible confounds.

To ensure consistent processing of the two targets,
participants were required at the beginning of each trial
to fixate on a white cross at the center of the screen for at

Figure 1. The effects of reward-induced changes in sensory processing and later stages of decision making on target selection in Experiments 1 and 2.
(A–B) Modulation of sensory processing by reward information and its effect on target selection in Experiments 1 (A) and 2 (B). Reward information
can enhance or facilitate processing of the target that appear on the more rewarding side (depicted with thicker lines) causing this target to be perceived
earlier (perceptual bias). This would increase the probability of choosing the target on the more rewarding side in Experiment 1 (A) but increase the
probability of choosing the target on the less rewarding side in Experiment 2, in which the participants have to saccade to the target that appeared
second (B). The plots at the bottom depict changes in the probability of choosing the better target as a function of the TOA favoring the better (worse)
target in Experiment 1 (respectively, Experiment 2). The black curve shows the probability of choosing the better target in the absence of any reward
modulation. The highlighted arrow indicates the locus of reward modulation. (C–D) Modulation of later stages of decision making by reward information
and its effect on target selection in Experiments 1 (C) and 2 (D). Reward modulation of later stages of decision making increases the probability
of choosing the better target (response bias) in both experiments similarly. Conventions are the same as in A–B [R1.2].
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least 500 msec (see Figure 2 for the trial sequence).
Fixation was considered broken when the participant’s
eye position deviated 112.5 pixels (∼2° visual angle) from
the fixation cross before the fixation period ended. If the
participant broke fixation, a new trial would begin after a
1000-msec pause. After successful fixation, the amounts of
reward points to be earned/lost upon a correct/incorrect
response to each target were signaled on the side of the
fixation cross corresponding to that target.

The amounts of reward points expected from correct
and incorrect responses, which we refer to as gains and
losses, on both sides were presented close to the fixation
cross and large enough to be read without breaking fixa-
tion (∼2° visual angle from the fixation cross). To present
different reward information more distinguishably, the
amounts of gains and losses were presented in green
and red, respectively. After the offset of reward informa-
tion at ∼1000 msec, there was a variable interval between
500 and 1000 msec (uniform distribution) before the first
target appeared on the screen. The second target then
appeared after an interval selected from the following
values: 0, 16.7, 33.3, 50, and 66.7 msec. We refer to these
values as the TOA. Targets were presented at equal dis-
tances from the fixation cross (∼7° visual angle).

All stimuli were presented on an FSI AM250 monitor,
which has a refresh rate of 60 Hz and resolution of 1920 ×
1080 pixels. Participants were seated 60 cm from the
computer screen. Eye movements were recorded using

a video-based eye-tracking system (Eyelink 1000, SR
Research Ltd). To minimize head movements, partici-
pants were seated with their chin on a chin rest. The ex-
periments were programmed using PsychToolbox in
MATLAB (Kleiner et al., 2007; Brainard, 1997; Pelli, 1997).

Reward Conditions

Both Experiments 1 and 2 consisted of four sessions,
each of which corresponded with one of the three re-
ward conditions: Neutral, Gain, and Loss. In the Neutral
condition, which always preceded either the Gain or Loss
condition, correct and incorrect responses to either tar-
get resulted in gaining or losing 3 points, respectively (in-
dicated by the [3, −3] on the two sides of the fixation
point; Figure 2). In the Gain condition, reward points
for saccade to one target were [5,−3], whereas the other
target had reward points of [1, −3]. In the Loss condi-
tion, the targets were associated with reward points of
[3, −1] and [3, −5]. These values were selected based
on our pilot study to ensure similar differences in gain
and loss values, assuming an average loss aversion factor
of 2. During the Gain and Loss conditions, the side with
the target with higher expected value was randomly as-
signed on each trial. The order of the Gain and Loss con-
ditions was randomized across participants. Each reward
condition consists of 180 trials and was performed in a
single session of the experiment without pause (lasting

Figure 2. Schematic of the experimental paradigm. (A) Timeline of a trial during Experiment 1. Each trial began with a fixation cross followed by the
presentation of reward points associated with a correct/incorrect response for each target on both sides of the fixation cross (in green for gains
and red for losses). The amount of expected reward was manipulated in three experimental conditions (Neutral, Gain, and Loss) as indicated in the
inset. Following the presentation of the reward information, two identical targets (gabor patches) appeared on the screen asynchronously. The
participants’ task was to report the first target that appeared on the screen by making a saccade to the target. Reward feedback was then given
by a green circle for correct response or red circle for incorrect response around the selected choice with reward points gained or lost, respectively,
in the center of the circle. (B) Timeline of a trial during Experiment 2. Stimulus and reward information were presented similar to Experiment 1
except the correct response required making a saccade to the second target that appeared on the screen.
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about 15–20 min). Therefore, each session only involved
one of the three reward conditions.

Fitting Choice Behavior and Estimated Parameters

We fit choice data from each session (reward condition)
of the experiment separately to estimate different as-
pects of target selection. The psychometric function in
Experiment 1 was defined as the probability of choosing
the left target as a function of the TOA favoring the left
target, TOA = tright − tleft, where tleft and tright are the
onset time of the left and right targets, respectively.
The psychometric function in Experiment 2 was defined
as the probability of choosing the left target as a func-
tion of the TOA favoring the right target (by flipping
the sign for the TOA on each trial) to measure target se-
lection as a function of the signal relevant for the task.
We then used the standard maximum likelihood estima-
tion (by minimizing the negative log likelihood) to fit
the psychometric function in each session using the
following equation:

pL TOAð Þ ¼ 1
1þ e− βsideþβs �TOAþ c�βrð Þ (1)

where βside is the side bias measuring the participant’s
preference for saccade to target on the left side of the
fixation cross regardless of what was presented, βs

represents sensitivity to sensory information (i.e., how
selection changes as a function of the TOA), βr is the
reward bias measuring the preference in target selection
toward the side with the larger expected reward. Finally,
c is a dummy variable that indicates the more reward-
ing side on each trial (i.e., it is 1 if the left side is more
rewarding, 0 if both sides are equally rewarding, and
−1 if the right side is more rewarding). Critically, these
parameters capture different aspects of target selection
and how this process is influenced by reward information.
Note that the probability of choosing the left option in
Equation 1 is dimensionless and thus βside, βs × TOA,
and βr are also dimensionless. As a result, βs has unit
of 1

msec because TOA measures time in msec. Throughout
the article, we report the dimensionless reward bias (βr),
side bias (βside), and sensitivity that has the unit of
msec−1. We also report the TOA equivalent of shifts in
target selection due to reward information and inherent
bias in selection after dividing βside and βr by βs [R2.m].
We also computed error in parameter estimation with

two different methods. First, we used the Hessian matrix
of the log-likelihood function to find the 95% confidence
interval of the estimated parameters. Second, we ran-
domly sampled 95% of the data 50 times to fit the ensu-
ing psychometric function and then calculated the mean
and standard deviation of the estimated parameters
across all samples.

Data Exclusion

We excluded 20 sessions from the total 200 sessions of
the two experiments completed by the 29 participants.
Exclusion was performed on a session-by-session basis
using three exclusion criteria. First, we excluded sessions
in which sensitivity to the TOA was negative, indicating
that the participant did not perform the task properly
by ignoring the main task variable (TOA) on most trials.
Second, we excluded sessions in which the overall task
performance did not exceed chance (50%) plus two
times SEM, reflecting an unusually poor performance.
Using these two criteria, we removed 19 sessions from
eight different participants (seven of these participants
had one or two excluded sessions except one participant
whose all eight sessions were excluded). Finally, we dis-
carded sessions in which either of the fitting parameters
(i.e., βs, βside, or βr) deviated by more than three times
the standard deviation from the corresponding parame-
ter’s mean across all sessions. The third criteria led us
to remove one more session. Results reported here are
based on the remaining 180 sessions (valid sessions).

Statistical and Data Analysis

We used the standard maximum likelihood estimation
to find the parameters of the psychometric function in
each session. Then, we used two-sided signed rank test
to compare the estimated parameters with the null hy-
pothesis (0 corresponding to no effect). To compare re-
ward biases between the Gain and Loss conditions, we
used two-sided Wilcoxon rank-sum test. We used both
Pearson and Spearman correlation to examine the cor-
relation between estimated parameters.

To determine the model that best explains the variances
in the saccadic RT (SRT), we used a stepwise general re-
gression model (GLM). We included the following regres-
sors in the stepwise GLM: unequal reward condition
indicating unequal (Gain and Loss) or equal (Neutral) ex-
pected reward outcomes, the TOA, response accuracy
(correct vs. incorrect response), and a dummy variable
indicating whether the chosen target had the higher or
lower expected reward (chosen-target relative value).
The last regressor only applied to the Gain and Loss con-
ditions. A stepwise GLM procedure examines all combina-
tions of regressors and their interactions to determine
terms whose inclusion results in a significant increase of
the adjusted R2. We used custom codes and the statistical
package in MATLAB (MathWorks, Inc.) to perform all sim-
ulations and statistical analyses.

Optimality Analysis

The optimal reward bias is defined as the amount of shift
in target selection due to reward information that maxi-
mizes the total reward earned in a given session. To de-
termine the optimal reward bias, we first calculated the
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expected amount of reward earned assuming a given
level of sensitivity to sensory information and loss aver-
sion. The participant’s sensitivity can predict the overall
number of correct choices, and thus, the number of re-
ward points they can earn. Loss aversion causes individ-
uals to respond more strongly to reward points lost than
gained (note that reward points were assigned to the two
sides on a trial-by-trial basis). Considering these factors,
the expected payoff associated with saccades to the left
(L) and right (R) can be calculated using the following
equations:

payoffL p;γð Þ ¼ p βs;TOAð Þ � gainLð Þ
þ γ 1−p βs;TOAð Þð Þ � lossLð Þ

payoffR p;γð Þ ¼ 1−p βs;TOAð Þð Þ � gainRð Þ
þ γp βs;TOAð Þ � lossRð Þ

(2)

where γ represents the loss aversion factor and p(βs,
TOA) is the probability of the correct response for a
given TOA:

p βs;TOAð Þ ¼ 1
1þ e− βs�TOAð Þ (3)

where βs represents sensitivity to sensory information.
The total expected payoff for a given value of shift in tar-
get selection, μr, is equal to

payoff TOA; μr;βs;γð Þ ¼ Pcho TOA; μr;βsð Þ
� payoffL
þ 1−Pcho TOA; μr;βsð Þð Þ
� payoffR (4)

where Pcho(TOA, μr, βs) represents the probability of
choice for a given TOA, μr, and βs, which is computed
as follows:

Pcho TOA; μr;βsð Þ ¼ 1
1þ e− βs�TOAþμrð Þ (5)

As a result, the total expected amount of reward earned
for all values of the TOA for given values of μr and βs is
equal to

ER μr;βs;γð Þ ¼
Z

payoff TOA; μr;βs;γð ÞdTOA (6)

where the integral is computed by summating over all
values of the TOA. Finally, the optimal reward bias can
be computed by finding a value of μr that maximizes
the value of ER for specific values of sensitivity and loss
aversion factor (using Equation 6). We compared reward
biases of individual participants with the predicted

optimal values (=μropt ) to examine the deviations from
optimality.

Computational Model

The basic model consisted of two cortical columns with
two pools of excitatory neurons and one inhibitory pool
of neurons in the superficial layer and two pools of excit-
atory neurons in the deep layer (Soltani, Noudoost, &
Moore, 2013; Supplementary Figure 1). All neural pools
in all the layers received a background input mimicking
input from adjacent cortical neurons with different types
of selectivity. The excitatory pools in the superficial layer
also received visual input related to the presentation of
targets on the screen. Specifically, the visual input to
the two pools were similar except that they had different
onset timing according to the TOA on each trial. More-
over, the two pools of excitatory neurons in the super-
ficial layer were mutually inhibited using a shared pool
of inhibitory interneurons. This mutual inhibition created
a winner-take-all competition and caused activity in excit-
atory pools to diverge in both the superficial and deep
layers. We used a mean field approximation of a spiking
network model of decision-making to simulate the super-
ficial layer (Wong & Wang, 2006). Each excitatory pool of
neurons in the deep layer had weak self-excitatory recur-
rent connections. The deep layer then projected its out-
put to the brain stem or superior colliculus to direct a
saccadic eye movement. We determined the choice of
the network on each trial by identifying the first deep-
layer excitatory pool whose activity passed 15 Hz (consid-
ered the winner pool). The full details of the basic model
are described elsewhere (Soltani et al., 2013).
To simulate the observed effects of unequal reward infor-

mation, we considered three alternative mechanisms. These
mechanisms affected different parts of the model, mimick-
ing either modulations of sensory processing or later stages
of decision-making processes. First, to simulate the effect of
reward information on later stages of decision-making pro-
cesses, we included a reward-based input to the excitatory
pools in the deep layer (Figure 9A; Mechanism 1). This input
was independent of the amount and timing of the visual
input (TOA) on a given trial. Second, to simulate the effect
of reward information on sensory processing, we assumed
two alternative mechanisms in which reward information
could modulate the visual input to the decision circuit. In
the first mechanism, the input evoked by targets with a
larger and smaller expected reward was multiplied by
(1 + λ) and (1 − λ), respectively, where λ is a constant
that measures the modulation of visual input by reward in-
formation (Figure 9B; Mechanism 2). This results in stron-
ger input for the target on the more rewarding side. In the
secondmechanism for modulating sensory processing, the
input for the target with larger expected reward was mod-
ulated through a shift in TOA in favor of the target with
larger expected reward (Figure 9B; Mechanism 3). This
shift mimics faster processing of input related to the target

6 Journal of Cognitive Neuroscience Volume X, Number Y



on the more rewarding side in higher visual areas. In both
Mechanisms 2 and 3, the reward cue presented to partici-
pants modulates the processing of sensory information and
thus could result in perceptual bias. Finally, to simulate
Experiment 2 (selecting the second target that appears
on the screen), we assumed that the projections of the
output in excitatory pools of the superficial layer is switched
via a gating mechanism (green dashed lines in Figure 9A,
B) to allow the selection of the nonwinner pool as the
response.
Because of the nonlinear dynamics of the proposed net-

work models, we had no a priori predictions about which
alternative mechanism would be more compatible with
the observed lack of correlation between shifts in target
selection and the sensitivity to the TOA, and whether a sin-
gle mechanism was sufficient to capture our main experi-
mental findings. Also, the two proposed mechanisms of
reward influence on sensory processing—Mechanism 2
corresponding to enhancement and Mechanism 3 to facil-
itation of sensory signals due to unequal reward—were
different enough to warrant the simulation and examina-
tion of both mechanisms.

RESULTS

Alternative Mechanisms for the Influence of
Reward on Target Selection and Their Predictions

To study the influence of reward information on percep-
tual decision-making in general and in temporal judgment
in particular, we used modified versions of the paired-
target task in which the participants reported what they
perceived to be the first (Experiment 1) and second
(Experiment 2) of the two targets to appear on the screen

by making a saccade to the target. At the beginning of
each trial, the amounts of reward points expected to be
gained and lost upon correct and incorrect responses, re-
spectively, were presented on the two sides of the fixation
cross and were manipulated across experimental sessions
(Figure 2; see Methods).

As described earlier, because reward information is not
informative about the correct response, an observer could
ignore reward information or use it to enhance sensory
processing on both sides equally (i.e., similar to the effect
of arousal). In either case, such observers (Type 1 ob-
servers) would not demonstrate any shift in choice toward
the better or worse target. Shifts in target selection due to
reward (i.e., reward bias), however, could happen through
different but nonexclusive mechanisms. First, reward in-
formation could bias attention to the better side, resulting
in enhanced processing of visual information on that side
and thus perceptual bias in Type 2 observers (Figure 1A,
B). Second, reward information could bias later stages of
decision-making processes toward selection of the better
target, causing response bias (Figure 1C, D) that could be
dependent or independent of sensitivity to sensory infor-
mation (Types 3 and 4 observers). Importantly, these dif-
ferent mechanisms for the influence of reward result in
different patterns of reward bias in the two experiments:
Changes in sensory processing would result in opposite
shifts in target selection in Experiments 1 and 2, but
changes in later stages of decision-making would similarly
shift target selection in the two experiments (Figure 3A–C)
[R1.2].

In addition to the pattern of the shifts in target selection,
the relationship between these shifts and sensitivity to
sensory information may be used to further distinguish be-
tween alternative mechanisms. First, the reward-induced

Figure 3. Reward bias and
its relationship to sensitivity
to sensory information as
predicted by different
mechanisms for the influence of
reward. (A) In Type 2 observer,
bias in target selection caused
by differential processing of the
two targets results in opposite
shifts in target selection in the
two experiment. Plot depicts a
hypothetical psychometric
function for a Type 2 observer
that exhibits perceptual bias.
The blue and orange labels for
the x-axis correspond to the
Experiments 1 and 2,
respectively. Conventions are
the same as in Figure 1. (B) A
Type 3 observer with response
bias exhibit similar shifts in
target selection in the two
experiments. (C) A Type 4
observer with response bias exhibit similar shifts in target selection in the two experiments. (D–F) Predictions of correlation between reward bias and
sensitivity to sensory information for a Type 2 (D), Type 3 (E), and Type 4 (F) observers.
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attentional effects on sensory processing could cause larger
shifts in target selection for decision makers who are more
sensitive to sensory signal (i.e., participants with larger
sensitivity). This would predict a specific pattern for re-
ward bias as a function of sensitivity for Type 2 observers
(Figure 3D) [R1.6]. In contrast, decision makers that
optimize their shift in target selection due to reward in-
formation (Type 3 observers) would show a decrease in
reward bias as a function of sensitivity to sensory infor-
mation (Figure 3E) [R1.4].

To illustrate this point, we computed the optimal reward
bias based on given values of sensitivity to sensory evidence
(βs) and loss aversion factor (γ) separately in the Gain and
Loss conditions (Figure 4A, D; see Optimality Analysis
section in Methods). We found that, in the Gain condition,
the optimal bias should decrease with larger sensitivity
(Figure 4B). Moreover, the optimal reward bias should de-
crease as loss aversion increases for a given level of sensi-
tivity (Figure 4C). In the Loss condition, the optimal reward
bias should also decrease with larger sensitivity (Figure 4E)
but increase with larger loss aversion (Figure 4F). There-
fore, these results show that optimal shift in target selection
requires reward bias to be inversely correlated with the in-
dividual’s level of sensitivity to sensory evidence. Moreover,
loss aversion should have opposite effects on reward bias
in the Gain and Loss conditions.

Together, these results predict that the effect of reward
on early sensory processing and perceptual bias (Type 2
observers) can be detected from opposite shifts in target
selection in Experiments 1 and 2 (Figure 3A) whereas the
effect of reward on later stages of decision-making and en-
suing response bias (Types 3 and 4 observers) could be

revealed from similar shifts in target selection in the two
experiments (Figure 3B–C). In addition, shifts in target se-
lection in observers that optimize response bias (Type 3
observers) depend on sensitivity to sensory information;
shifts should be small when sensitivity is high (corre-
sponding to good temporal judgment) and large if sensi-
tivity is low, corresponding to poor temporal judgment
(Figure 3E). On the other hand, in Type 4 observers, the
shifts in target selection are independent of sensory infor-
mation (Figure 3F) [R1.4].

Reward Information Affects Target Selection

We used our experimental data to test alternative pre-
dictions about the effects of reward on target selection de-
picted in Figure 3 to identify mechanisms by which reward
influences TOJ. To that end, we fit each participant’s psy-
chometric function (the probability of choosing the left tar-
get as a function of the TOA) using a sigmoid function to
estimate three parameters for each participant: sensitivity to
sensory information, side bias, and reward bias (see
Methods for more details). Sensitivity measures the fidelity
of target selection to sensory evidence (i.e., TOA), side bias
measures an overall bias in choosing the left or right target
independently of sensory information, and reward bias
measures bias in target selection toward the more reward-
ing side (Figure 5A–C). These parameters were estimated
separately for each of the three reward conditions.
We found that participants were sensitive to the TOA in

both experiments. The average values (±SD) of sensitivity
in Experiment 1 were equal to 0.0432 ± 0.0191, 0.0472 ±
0.0222, and 0.0438 ± 0.0179 (msec−1) for the Neutral,

Figure 4. Predicted optimal
shift in target selection due to
unequal expected reward. (A)
The expected payoff (reward
points) for a given level of
sensitivity (βs = 0.05 msec−1)
and reward bias during the
Gain condition. Each curve
represents the expected payoff
for a different level of loss
aversion (loss aversion factor γ).
The peak in each curve
indicates the optimal reward
bias. (B) The optimal reward
bias as a function of the
sensitivity to sensory evidence.
The optimal reward bias
diminishes as sensitivity
increases. (C) The optimal
reward bias as a function of the
loss aversion factor in the Gain
condition separately for three
different values of the
sensitivity. The optimal reward
bias decreases as loss aversion
increases in the Gain condition.
(D–F) The same as in A–C but for the Loss condition. Similar to the Gain condition, the optimal reward bias decreases with larger values of sensitivity.
However, the optimal reward bias increases as loss aversion increases in the Loss condition.
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Gain, and Loss conditions, respectively, and significantly
larger than zero (two-sided signed-rank test; Neutral: p =
5.18 × 10−9, d = 2.25; Gain: p = 2.7 × 10−5, d = 2.29;
Loss: p = 2.7 × 10−5, d = 2.47; Figure 5D). The average
values of sensitivity in Experiment 2 were equal to 0.0389 ±
0.0195, 0.0432 ± 0.0187, and 0.0378 ± 0.0259 (msec−1) for
the Neutral, Gain, and Loss conditions, respectively. As in
Experiment 1, these average values were significantly
larger than zero (two-sided signed-rank test; Neutral:
p = 7.6 × 10−9, d = 2.08; Gain: p = 2.7 × 10−5, d =
2.34; Loss: p = 4 × 10−5, d = 1.76; Figure 5G).
We compared sensitivity across the three conditions in

Experiments 1 and 2 to test possible differences between
the two experiments in terms of the overall task difficulty.
However, we found no significant difference in sensitivity
over all conditions of the two experiments (two-sided
signed-rank test; p = .26, d = 0.06). In addition, there
was no significant difference in sensitivity in either of
the three conditions between the two experiments (two-
sided signed-rank test; Neutral: p = .44, d = 0.06; Gain:
p = .36, d = 0.17; Loss: p = .81, d = 0.03). Thus, we did
not find any evidence for a difference in task difficulty (as

measured by sensitivity) between the two experiments
[R2.1].

We also examined estimated side bias in different re-
ward conditions and experiments. We note that, to min-
imize possible side bias, the side associated with the
target with better reward outcomes had been randomly
assigned for each trial. In Experiment 1, we did not ob-
serve any evidence for side bias except in the Neutral
condition (two-sided signed-rank test; Neutral: −0.32 ±
0.52, p = .003, d = 0.48; Gain: −0.28 ± 0.53, p = .094,
d = 0.39; Loss: −0.31 ± 0.70, p = .114, d = 0.36;
Figure 5E). Furthermore, we did not find any evidence
for side bias in any conditions of Experiment 2 (two-sided
signed-rank test; Neutral: 0.10 ± 0.49, p = .37, d = 0.06;
Gain: 0.20 ± 0.57, p = .93, d = 0.03; Loss: 0.12 ± 0.64,
p = .91, d = 0.03; Figure 5H). We also found similar re-
sults when we measured side bias in terms of the TOA
(Supplementary Figure 2A, C). Together, these results il-
lustrate that participants exhibited very small side bias in
both experiments.

Having established that participants performed the
temporal judgment task appropriately without significant

Figure 5. Influences of unequal
expected reward on target
selection. (A–C) Example
psychometric functions in
different conditions of
Experiments 1 and 2. (A)
Plotted is the probability of
choosing the left target as a
function of the TOA for an
example participant in the Gain
and Neutral conditions of
Experiment 1. This participant
exhibited a slightly larger level
of sensitivity in the Gain
compared with Neutral
condition. Positive (negative)
values of TOA correspond to
the left (right) target to appear
first. Dashed lines indicate the
TOA at which the two targets
are selected equally. (B) The
same as in A but for another
participant who exhibited a
larger side bias in the Neutral
than in Gain condition of
Experiment 2. In Experiment 2,
negative (positive) values of
TOA correspond to the left
(right) target appearing first.
(C) Psychometric functions of
an example participant in the
Gain condition of Experiments 1
and 2. Plotted is the probability
of choosing the better target as
a function of the TOA for that
target. For Experiment 1, negative (positive) values of TOA means the target with smaller (larger) expected reward has appeared first. In
Experiment 2, negative (positive) values of TOA means the target with smaller (larger) expected reward appeared second. This participant
exhibited similar reward bias in the two experiments. (D–F) Histograms plot the number of participants with given values of sensitivity (D),
side bias (E), and reward bias (F) under different reward conditions during Experiment 1. The dashed lines show the medians, and each
asterisk indicates a significant difference from 0 (two-sided signed-rank test, p < .05). (G–I) The same as in D–F but for Experiment 2.
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side bias, we then examined reward bias measuring the
effect unequal expected reward on target selection. In
Experiment 1, 87% and 96% of participants exhibited a
significant reward bias in the Gain and Loss conditions,
respectively. However, across all participants, reward bias
toward the more rewarding side was significant only in
the Loss condition (two-sided signed-rank test; Gain:
0.08 ± 0.24, p = .107, d = 0.38; Loss: 0.38 ± 0.44, p =
1.44 × 10−4, d = 0.99; Figure 5F). In Experiment 2, 83%
and 96% of participants exhibited a significant reward bias
in the Gain and Loss conditions, respectively, and across
all participants, reward biases were significantly larger than
zero in both conditions (two-sided signed-rank test; Gain:
0.13 ± 0.24, p = .024, d = 0.55; Loss: 0.25 ± 0.61, p =
.008, d = 0.65; Figure 5I). We found similar results when
we measured reward bias in terms of the TOA (Supple-
mentary Figure 2B, D). Together, our results show that
most participants used reward information to bias their
target selection. Hence, our findings are not compatible
with Type 1 observers.

To ascertain that noise in the estimation of the parame-
ters did not influence our results, we calculated the error of
estimation based on two different methods (see Methods
for more details). Using the first method, the Hessian ma-
trix of the log-likelihood function, we found small errors
(mean ∼14%) in the estimation of reward biases (Supple-
mentary Figure 3A). The second method that was based
on resampling produced a slightly larger error estimation
(mean ∼20%; Supplementary Figure 3B). These results
demonstrate the robustness of our fitting procedure.

Reward Effects Are Mediated through Changes in
Later Stages of Decision-making

To test the predictions of alternative mechanisms, we next
compared reward bias in the two experiments. As detailed
above, a difference between shifts in target selection (or
reward bias) in Experiments 1 and 2 would indicate reward
effects on early stages of sensory processing and per-
ceptual bias. However, we did not find a significant differ-
ence in reward biases between Experiments 1 and 2 on

average (Wilcoxon rank-sum test; p = .69, d = 0.004;
Figure 6A, B) or for the Gain or Loss condition separately
(Wilcoxon rank-sum test; Gain: p = .645, d = 0.08; Loss:
p = .594, d = 0.04; Figure 5F, I). This was also true when
comparing reward biases in individuals who performed
both experiments successfully (two-sided signed-rank
test; Gain: Δ = −0.04 ± 0.39, p = .44, d = 0.15; Loss:
Δ = 0.07 ± 0.71, p = .76, d = 0.03) [R2.1]. Therefore,
our results do not provide evidence for reward effects
on early stages of sensory processing and perceptual bias
and instead are more compatible with response bias.
Although both Type 3 and Type 4 observers exhibit sim-

ilar shifts in Experiments 1 and 2, reward biases in Type 3
but not Type 4 observers were correlated with sensitivity
to sensory information (Figure 3E, F). Therefore, we exam-
ined the correlation between reward bias and sensitivity of
individual participants in the two experiments. However,
we did not find any evidence for the correlation neither be-
tween reward bias and an individual’s sensitivity in any con-
ditions of the two experiments (Pearson correlation; Gain
condition: Experiment 1: r = .02, p = .91; Experiment 2:
r = −.09, p = .66; Loss condition: Experiment 1: r =
.27, p = .20; Experiment 2: r = .36, p = .10) nor across
the two conditions of each experiment (Pearson correla-
tion; Experiment 1: r = .07, p = .66; Experiment 2: r =
.24, p = .10; Figure 6C [R1.3]). This result suggests that
the observed shift in target selection due to the reward
information is more compatible with Type 4 observers.
Finally, we also compared reward bias between the Gain

and Loss conditions. Although we did not find any evidence
for correlation between reward bias in Gain and Loss
conditions for participants who successfully performed
(valid sessions) in both conditions (Pearson correlation;
Experiment 1: r = −.31, p = .22, n = 20; Experiment 2:
r = −.02, p = .94, n = 17; Spearman correlation; Exper-
iment 1: r = −.04, p = .88, n = 20; Experiment 2: r = .07,
p = .79, n = 17), there was an overall larger bias in the
Loss than Gain condition in the two experiments (two-
sided signed-rank test; Δ = 0.34 ± 0.60, p = .006, d =
0.52, n= 37; Supplementary Figure 4). The larger effect of
unequal loss on choice behavior in our temporal judgment

Figure 6. Similar shifts in target
selection in Experiments 1 and
2 and lack of correlation
between reward bias and
sensitivity across individual
participants. (A) Plotted are the
psychometric functions of
individual participants (light
blue) and median psychometric
function (solid blue curve)
across all participants in
Experiment 1. The solid black
curve shows the psychometric
function in absence of any
reward biases. Data from both the Gain and Loss conditions are included. (B) Similar to A, but for Experiment 2. (C) Plotted is the reward bias versus
sensitivity across individual participants during Experiments 1 and 2. The solid blue and orange lines show the linear fit to the reward bias and
sensitivity data points in Experiments 1 and 2, respectively [R1.3].

10 Journal of Cognitive Neuroscience Volume X, Number Y



task resembles the well-known phenomenon that losses
have stronger impact on choice behavior than gains of
similar size, thus providing evidence for loss aversion
in perceptual decision-making with possible gains and
losses [R2.2].

Comparison of Participants’ Reward Bias with
Optimal Values

As we showed above, our experimental results are more
compatible with response bias that was determined
heuristically (Type 4 observer) and not based on optimi-
zation (Type 3 observer). To make this point more di-
rectly, we also compared the observed and optimal
values of reward bias for individual participants assuming
different values of loss aversion (Figure 4). We found that
in the Gain condition of both experiments, participants
exhibited reward biases that were smaller than the pre-
dicted optimal biases based on loss neutrality, corre-
sponding to loss aversion factor equal to 1 (two-sided
signed-rank test; Δ = −1.19 ± 0.06, p = 3.5 × 10−9,
d = 3.06; Figure 7A–C). The observed reward biases
would be optimal only if loss aversion factor was very
large because larger loss aversion gives rise to smaller
shifts in the Gain condition.
We also found the observed reward biases in the Loss

condition to be smaller than the optimal values based on
loss neutrality (two-sided signed-rank test; Δ = −1.11 ±
0.10, p = 6.6 × 10−8, d = 1.39; Figure 7D–F). In this
case, however, the observed reward biases would be
optimal if loss aversion factor was very small because
smaller loss aversion gives rise to smaller shifts in Loss
condition. Therefore, the observed smaller-than-optimal

shifts in the Loss condition point to strong loss-seeking
as opposed to strong loss-aversive behavior that is seen
in the Gain condition. Together, these results illustrate
that the amount of shift in target selection due to un-
equal expected reward was suboptimal. As demonstrated
below, our modeling results can explain why such op-
timization is not possible because of the loci of reward
influence.

RT Reflects the Effect of Task Parameters

In our experiments, the participants were not instructed to
saccade as quickly as possible and had to wait until both
targets were presented before making a saccade.
Nonetheless, we analyzed the SRT using a stepwise GLM
model (see Methods) to examine whether the SRT reflects
any task parameters. The stepwise GLM revealed that the
TOA, unequal reward condition, response accuracy, and
interaction between the TOA and response accuracy and
between the TOA and unequal reward condition had sig-
nificant effects on the SRT (stepwise GLM: F(5, 32394) =
452, p = 10−273, adjusted R2 = .065).

First, we found that the SRT decreased with the abso-
lute value of the TOA corresponding to easier trials (β for
TOA = −1.11, p = .04; Figure 8A). Second, unequal re-
ward outcomes resulted in an overall decrease in the SRT
in the Gain and Loss conditions compared with the
Neutral condition (β for reward condition = −0.11, p =
1.03 × 10−26; Figure 8A). Third, the SRT was significantly
smaller for correct trials compared with incorrect trials (β
for response accuracy =−0.076, p= .0005; Figure 8B). As
mentioned above, the stepwise GLM did not reveal a sig-
nificant effect of the chosen-target relative value on the

Figure 7. The amount of shift
in target selection was
suboptimal in the Gain and Loss
conditions of both experiments.
(A) Plot shows individuals’
reward bias as a function of
their sensitivity to the TOA. The
blue, red, and yellow lines
represent the optimal value of
reward bias for different values
of loss aversion factor. (B) The
same as in A but for Experiment
2. (C) Plotted is the distribution
of the differences between
observed and predicted optimal
reward biases based on loss
neutrality (γ = 1) across all
participants in the Gain
condition of Experiments 1 and
2. (D–F) The same as in A–C
but for the Loss condition in the
two experiments. Note that a
larger loss aversion factor
predicts larger reward bias in the
Loss condition (the opposite is
true for the Gain condition).
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SRT (Figure 8C). This lack of evidence for a significant
effect could be caused by a few factors: (1) the stronger
effects of TOA and response accuracy on the SRT, (2)
different heuristics used to process gain and loss informa-
tion, and (3) there was no time pressure in our experi-
ments. Overall, these results show that SRT was sensitive
to the TOA and unequal expected reward outcomes, indi-
cating that both types of information influenced per-
ceptual choice.

Plausible Neural Mechanisms for Observed Shifts
in Target Selection

To reveal plausible neural mechanisms underlying the
shifts in target selection, we simulated our experimental
observations using a cortical network model that we have
previously used to successfully simulate the paired-target
task (Soltani et al., 2013). Specifically, we focused on
capturing our two main experimental findings: (1) similar
shifts in target selection during Experiments 1 and 2 and
(2) lack of correlation between reward bias and individ-
uals’ sensitivity to sensory evidence in both experiments.

The model consisted of two neural columns with two
pools of excitatory neurons and one inhibitory pool of
neurons in the superficial layer, and two pools of excita-
tory neurons in the deep layer (Supplementary Figure 1;
see Methods for more details). To simulate the effect of re-
ward information, we considered three alternative me-
chanisms that could influence different parts of the
model to mimic different stages of decision-making pro-
cesses: reward-based input to the excitatory pools in the
deep layer (Figure 9A; Mechanism 1); reward-dependent
gain modulation of sensory input that gives rise to stronger
input for the target on the more rewarding side (Figure 9B;
Mechanism 2); and facilitation of response to the tar-
get with higher expected reward in higher visual areas
(Figure 9B; Mechanism 3).

Simulation results showed that unequal expected re-
ward results in significant reward bias using all three
mechanisms (Figure 9C–E). These reward biases, how-
ever, were similar for Experiments 1 and 2 only in the
model based on Mechanism 1 (Figure 9C). We also exam-
ined the correlation between reward bias and the sensi-
tivity to visual input for a given set of model parameters.
To generate target selection with different levels of sen-
sitivity to sensory evidence, we changed the background
noise in the input to the superficial layer. We did not find
any evidence for correlation between reward bias and sen-
sitivity to the TOA in the model based on Mechanism 1
(Pearson correlation; Experiment 1: r = .07, p = .47;
Experiment 2: r = .16, p = .12; Figure 10A, D). This non-
significant correlation, however, had a positive sign similar
to that of the experimental data. In contrast, in the model
based on Mechanism 2, reward bias were positively and
negatively correlated with sensitivity to the TOA in Ex-
periments 1 and 2, respectively (Pearson correlation;
Experiment 1: r = .89, p = 1.72 × 10−35; Experiment 2:
r = −.89, p = 2.60 × 10−35; Figure 10B, E). The model
based on Mechanism 3 showed similar behavior to that of
the model based on Mechanism 2 (Pearson correlation;
Experiment 1: r = .90, p = 3.73 × 10−35; Experiment 2:
r = −.88, p = 7.03 × 10−34; Figure 10C, F).
Overall, these results illustrate that the model based on

Mechanism 1 is more compatible with our experimental
data for two reasons: (1) exhibiting equal shifts in target
selection in Experiments 1 and 2, replicating the ob-
served response bias, and (2) lack of correlation between
reward bias and sensitivity to the TOA in both experi-
ments. These modeling results support the conclusion
that the observed shift in participants’ behavior due to
the reward information is more likely to be due to changes
in later stages of decision-making. In addition, the model-
ing results provide a plausible mechanism for how reward
information influences perceptual choice. Finally, by

Figure 8. SRT was sensitive to both the TOA and unequal expected reward outcome, reflecting response accuracy but did not differ between the
selection of the better and worse targets. (A) Plotted is the z-scored SRT as a function of the TOA for the Neutral (blue), Gain (green), and Loss (red)
conditions. An asterisk shows a significant difference between the average SRT in the Neutral and Gain, or Neutral and Loss conditions (stepwise
GLM, p < .05). (B) Plotted is the average z-scored SRT on correct and incorrect trials, separately for the three reward conditions indicated in A. An
asterisk shows a significant difference between the average SRT on correct and incorrect trials (stepwise GLM, p< .05). (C) Plotted is the average SRT
on trials in which the chosen target was the target with higher or lower expected reward corresponding to the better and worse targets, respectively.
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Figure 10. Shift in target selection due to unequal reward input was more compatible with Mechanism 1. (A) Reward bias is plotted as a function of
the sensitivity to the TOA for Experiment 1 using the model based on Mechanism 1. Each point shows the replica of a participant. The gray
dashed line shows the least squares line fitted on the simulated behavioral data. (B–C) The same as in A but using the model based on Mechanisms 2 (B)
and 3 (C), respectively. (D–F) The same as in A–C but for Experiment 2. The model based on Mechanism 1 did not show a significant correlation
between reward bias and the sensitivity to the TOA. However, the models based on Mechanisms 2 and 3 did exhibit significant correlation between
reward bias and the sensitivity to the TOA.

Figure 9. Alternative
mechanisms for simulating the
effects of unequal expected
reward on perceptual decision
making. (A) The extended model
with independent reward input
(Mechanism 1). In this model,
excitatory pools in deep
layer receive an additional
reward-based input that was
independent of the visual input.
The blue solid lines for
Experiment 1 and green dashed
lines for Experiment 2 show the
output projection of excitatory
pools of superficial layer to deep
layer excitatory pools. (B) The
extended model with
reward-dependent modulation of
visual input (Mechanisms 2 and
3). In this model, the visual input
to the excitatory pools of
superficial layer is modulated by
reward information provided at
the beginning of the trial. This
modulation was performed via
two different mechanisms. In a
model with Mechanism 2, reward information strengthens (weakens) the visual input for the target with higher (lower) expected reward. In a model
with Mechanism 3, unequal reward information results in faster processing (i.e., earlier onset) of the target with higher expected reward. (C) Example
behavior of a model with Mechanism 1. Probability of choosing the target on the more rewarding (better) side as a function of TOA in Experiment 1
(and −TOA in Experiment 2) using Mechanism 1. The results with no reward modulation (black diamonds) are shown as the control. The model with
Mechanism 1 (circles) produces similar shift in target selection in the two experiments. (D–E) Similar to C but for the model with Mechanisms 2 (D) and
3 (E). The models with reward-dependent modulation of visual input (Mechanisms 2 and 3) produce opposite shifts in the two experiments.

Rakhshan et al. 13



assuming independent reward input (with additional
noise) to later stage of decision-making, the model with
Mechanism 1 can explain how reward biases could be-
come independent of sensitivity to sensory signals and
thus could not be optimized.

DISCUSSION

Several studies in the past two decades have aimed to re-
veal neural mechanisms by which reward influences per-
ceptual decision-making. These studies have argued that
unequal reward outcomes could either increase the ten-
dency to choose the target with larger expected reward
(response bias) and/or result in differential processing of
sensory information and thus perceptual bias. To directly
test these two alternative but not necessarily exclusive
hypotheses, in two sets of experiments, we asked par-
ticipants to saccade to the first or second target that ap-
peared on the screen while we manipulated the amount
of reward expected from the two alternative responses.
Importantly, a bias in sensory processing would result
in opposite shifts in target selection in the two experi-
ments, whereas response bias would cause similar shifts.
We did not find any evidence for different amounts of
shift in the two experiments, indicating that expected re-
ward is more likely to cause response bias rather than a
bias in sensory processing. These findings dovetail with
results from recent studies that used modeling to deter-
mine the mechanisms underlying the influence of ex-
pected reward on perceptual choice (Gao et al., 2011;
Diederich, 2008; Diederich & Busemeyer, 2006) and
studies that look at the effect of expectation in general
(Rungratsameetaweemana, Itthipuripat, Salazar, &
Serences, 2018; Bang & Rahnev, 2017).

Nonetheless, others have argued that reward can di-
rectly influence the processing of sensory information dur-
ing perceptual decision-making (Cicmil et al., 2015; Liston
& Stone, 2008; Pleger et al., 2008; Voss et al., 2008). A pos-
sible reason for the discrepancy between their findings
and ours could be due to differences in the experimental
paradigms in terms of time dependency. The temporal
judgment task used here is a type of time-dependent per-
ceptual choice, and it is possible that reward exerts its in-
fluence differently during time-independent perceptual
choice. For example, the integration of sensory signal over
time could push the influence of reward information to
later stages of decision-making, resulting in response bias
instead of perceptual bias. However, there are studies
(e.g., Diederich & Busemeyer, 2006) showing the effects
of reward as response bias even in discrimination between
the lengths of two lines (i.e., time-independent tasks).
Regardless, future studies are required (using our ap-
proach) to test the generalizability of our findings to other
types of perceptual decision-making.

Similar to the effects of reward on perceptual decision-
making, there is a long-lasting debate on whether at-
tention influences perception by accelerating sensory

processing (the “prior entry” hypothesis) or inducing de-
cision biases. Some have argued that attention enhances
the speed of sensory processing (Hikosaka, Miyauchi, &
Shimojo, 1993; Stelmach & Herdman, 1991), whereas
others have maintained that observed effects are primar-
ily due to attentional modifications of the decision
mechanisms (Schneider & Bavelier, 2003). Most of these
studies used a TOJ task to measure the point of subjec-
tive simultaneity (PSS) from attentional cueing. For exam-
ple, Shore and colleagues examined the effect of
attentional cueing on perception by asking participants
to report the first or second targets that appeared on
the screen to separate changes in sensory processing
from response biases (Shore et al., 2001). They found
that attention mainly influences perception by accel-
erating sensory processing. In contrast, Schneider and
Bavelier (2003) have argued that the shift in the PSS
due to attentional cueing in the TOJ task is not an
adequate reason to accept the prior entry hypothesis.
Instead, they suggest that one should compare shifts in
the PSS in the TOJ task with those of in a simultaneity
judgment task, in which the participants report whether
two stimuli appeared simultaneously or successively. By
making this comparison, they showed that attentional
cueing has little influence on accelerating sensory pro-
cessing similarly to what we found for the effects of
unequal reward.
Here, rather than explicit attentional cueing, we used

unequal reward information to bias processing of sensory
information and/or decision-making, both of which could
have behavioral benefits in terms of harvested reward.
We also provided reward feedback (correct or incorrect
judgment) on each trial, which allowed participants to
correct their biases if desired so. The fact that we ob-
served almost opposite results to those by Shore et al.
(2001) based on attentional cueing indicates that reward
information influences perception rather differently than
how attention affects perception, and therefore, reward
and attentional processes rely on different neural mech-
anisms to guide behavior. Furthermore, because reward
information in our experiments was not predictive of the
correct response, it is possible that this type of cueing
exploits a different mechanism. Nonetheless, attention
has been shown to closely interact with reward pro-
cessing (Spitmaan, Chu, & Soltani, 2019; Farashahi,
Azab, Hayden, & Soltani, 2018; Soltani, Khorsand, Guo,
Farashahi, & Liu, 2016; Stănişor, van der Togt, Pennartz,
& Roelfsema, 2013; Serences, 2008) and revealing that
relationship is crucial for fully comprehending both
processes (Maunsell, 2004).
Reward could also influence sensory processing without

biasing sensory processing in a specific direction. For ex-
ample, reward could cause arousal and/or increase motiva-
tion and effort in the task, both of which enhance sensory
processing and performance as found in other studies
(Vassena, Deraeve, & Alexander, 2019). Such enhance-
ments would result in steeper psychometric function but
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not a bias toward the better or worse option. However, we
did not modulate the total expected reward nor did we
change reward values between trials of a given condition
(Neutral, Gain, or Loss). Thus, such motivational effects
may have not been present or faded away quickly over
the course of our experiments [R1.6].
It is important to note that, even though reward infor-

mation was not predictive of the correct response in our
experiments, participants still could use this information
to obtain more reward. More specifically, increasing sen-
sitivity to the more rewarding side does not help detec-
tion of the correct target but can improve performance in
terms of obtained reward points because temporal judg-
ment is not perfect. For example, an optimal observer
such as one using the sequential ratio test can incorpo-
rate reward information to adjust decision criterion (Gold
& Shadlen, 2001). Although an optimal observer may
only change the threshold for response to the more re-
warding side, a suboptimal observer may be persuaded
to attend more to the more rewarding side (prior entry
hypothesis), which could result in a change in percep-
tion. Interestingly, using visual search tasks in which dif-
ferent reward magnitudes were associated with detection
of different objects, Hickey and colleagues have shown
that reward enhances the saliency of certain features on
subsequent trials, which results in suboptimal perfor-
mance (Hickey, Chelazzi, & Theeuwes, 2010) [R1.6].
To reveal possible neural mechanisms underlying our

observations, we extended a biophysically plausible corti-
cal network model (Soltani et al., 2013) to simulate shifts
in target selection due to unequal expected reward based
on alternative mechanisms. We found that our experi-
mental results are more compatible with the influence
of reward information on later stages of decision-making
processes via biasing the activity in the output layer of
the decision circuit toward the target on the more reward-
ing side. Considering that lesions and reversible inactiva-
tion of the FEF cause similar shifts in target selection
during the paired-target task (Schiller & Tehovnik, 2003;
Schiller & Chou, 1998, 2000), reward could exert its influ-
ence through modulations of the output layer of the FEF.
Furthermore, our analyses of SRT revealed that unequal
expected reward outcomes resulted in faster decision-
making. Future experiments that emphasize speed could
provide additional information to test alternative models.
Importantly, we found that, to reproduce our experi-

mental results by our model, the input for biasing target
selection should be independent of sensory evidence,
which is more consistent with results from a few recent
studies (Gao et al., 2011; Diederich, 2008; Diederich &
Busemeyer, 2006). For example, using a task in which
the participants had to judge whether two lines are of
the same or different length while manipulating the pay-
off for the two responses, Diederich and Busemeyer have
shown that the effect of unequal payoffs is more compat-
ible with a two-stage processing of sensory and reward
information (Diederich & Busemeyer, 2006). In their

model, the decision maker first integrates reward informa-
tion followed by the integration of sensory information
(with no reward modulation) if no decision is made during
the first stage. In another study, Gao and colleagues used a
leaky competing accumulator model to show that reward
information biases the initial state of the decision variable
toward the target with higher expected reward (Gao et al.,
2011). Both these studies illustrate that reward informa-
tion does not interact with sensory evidence. In contrast,
in our study, all the explored mechanisms generated com-
parable shifts in target selection in Experiment 1 suggests
that, to distinguish the origin of reward effects, one needs
to consider the appropriate task design in addition to the
appropriate model.

Our results not only show that shifts in target selection
due to unequal expected reward were suboptimal and in-
dependent of individuals’ sensitivity to sensory signal but
also explain that these shifts could not be optimized if
reward influences later stages of decision-making inde-
pendently of the sensory input. In addition, we observed
a larger reward bias in the Loss condition compared with
the Gain condition in both experiments. This result re-
sembles loss aversion behavior during value-based choice
(Tversky & Kahneman, 1992) and extends this phenom-
enon to perceptual decision-making with different re-
ward outcomes. Together, these findings suggest that,
even during perceptual choice, heuristics are used for
differential processing of gain and loss information.

Similar but much weaker suboptimal behavior has also
been observed for biased reward probabilities during per-
ceptual decision-making (Navalpakkam, Koch, & Perona,
2009; Voss et al., 2008). Interestingly, it has been shown
that humans exhibit a closer-to-optimal criterion when
they deal with unequal reward probabilities rather than
unequal reward magnitudes on alternative options or
actions (Teichert & Ferrera, 2010; Maddox, 2002). Our
modeling results indicate that shifts in target selection
can be closer to optimal if reward information affects
the processing of visual input instead of later stages of
decision-making. Therefore, the difference in response
to unequal reward probability and magnitude could be
due to their influence on different stages of decision-
making. Finally, in environments that resemble more nat-
uralistic settings, adjustments in choice and learning of
reward probability can occur in the absence of any opti-
mization (Farashahi et al., 2017; Khorsand & Soltani,
2017). Future studies are required to determine whether
reward probability and magnitude exert their influence at
separate stages of decision-making.
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